Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 168: 185-197, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451657

RESUMO

Osteodentin is a dominant mineralized collagenous tissue in the teeth of many fishes, with structural and histological characteristics resembling those of bone. Osteodentin, like bone, comprises osteons as basic structural building blocks, however, it lacks the osteocytes and the lacuno-canalicular network (LCN), which are known to play critical roles in controlling the mineralization of the collagenous matrix in bone. Although numerous vascular canals exist in osteodentin, their role in tooth maturation and the matrix mineralization process remain poorly understood. Here, high resolution micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM) were used to obtain 3D structural information of osteodentin in shark teeth at multiple scales. We observed a complex 3D network of primary canals with a diameter ranging from ∼10 µm to ∼120 µm, where the canals are surrounded by osteon-like concentric layers of lamellae, with 'interosteonal' tissue intervening between neighboring osteons. In addition, numerous hierarchically branched secondary canals extended radially from the primary canals into the interosteonal tissue, decreasing in diameter from ∼10 µm to hundreds of nanometers. Interestingly, the mineralization degree increases from the periphery of primary canals into the interosteonal tissue, suggesting that mineralization begins in the interosteonal tissue. Correspondingly, the hardness and elastic modulus of the interosteonal tissue are higher than those of the osteonal tissue. These results demonstrate that the 3D hierarchical canal network is positioned to play a critical role in controlling the gradient mineralization of osteodentin, also providing valuable insight into the formation of mineralized collagenous tissue without osteocytes and LCN. STATEMENT OF SIGNIFICANCE: Bone is a composite material with versatile mechanical properties. Osteocytes and their lacuno-canalicular network (LCN) are known to play critical roles during formation of human bone. However, the bone and osteodentin of many fishes, although lacking osteocytes and LCN, exhibit similar osteon-like structure and mechanical functions. Here, using various high resolution 3D characterization techniques, we reveal that the 3D network of primary canals and numerous hierarchically branched secondary canals correlate with the mineralization gradient and micromechanical properties of osteonal and interosteonal tissues of shark tooth osteodentin. This work significantly improves our understanding of the construction of bone-like mineralized tissue without osteocytes and LCN, and provides inspirations for the fabrication of functional materials with hierarchical structure.


Assuntos
Osso e Ossos , Tubarões , Humanos , Animais , Microtomografia por Raio-X , Osteócitos/patologia , Ósteon
2.
Front Cell Dev Biol ; 10: 932341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313571

RESUMO

Crushing and eating hard prey (durophagy) is mechanically demanding. The cartilage jaws of durophagous stingrays are known to be reinforced relative to non-durophagous relatives, with a thickened external cortex of mineralized blocks (tesserae), reinforcing struts inside the jaw (trabeculae), and pavement-like dentition. These strategies for skeletal strengthening against durophagy, however, are largely understood only from myliobatiform stingrays, although a hard prey diet has evolved multiple times in batoid fishes (rays, skates, guitarfishes). We perform a quantitative analysis of micro-CT data, describing jaw strengthening mechanisms in Rhina ancylostoma (Bowmouth Guitarfish) and Rhynchobatus australiae (White-spotted Wedgefish), durophagous members of the Rhinopristiformes, the sister taxon to Myliobatiformes. Both species possess trabeculae, more numerous and densely packed in Rhina, albeit simpler structurally than those in stingrays like Aetobatus and Rhinoptera. Rhina and Rhynchobatus exhibit impressively thickened jaw cortices, often involving >10 tesseral layers, most pronounced in regions where dentition is thickest, particularly in Rhynchobatus. Age series of both species illustrate that tesserae increase in size during growth, with enlarged and irregular tesserae associated with the jaws' oral surface in larger (older) individuals of both species, perhaps a feature of ageing. Unlike the flattened teeth of durophagous myliobatiform stingrays, both rhinopristiform species have oddly undulating dentitions, comprised of pebble-like teeth interlocked to form compound "meta-teeth" (large spheroidal structures involving multiple teeth). This is particularly striking in Rhina, where the upper/lower occlusal surfaces are mirrored undulations, fitting together like rounded woodworking finger-joints. Trabeculae were previously thought to have arisen twice independently in Batoidea; our results show they are more widespread among batoid groups than previously appreciated, albeit apparently absent in the phylogenetically basal Rajiformes. Comparisons with several other durophagous and non-durophagous species illustrate that batoid skeletal reinforcement architectures are modular: trabeculae can be variously oriented and are dominant in some species (e.g. Rhina, Aetobatus), whereas cortical thickening is more significant in others (e.g. Rhynchobatus), or both reinforcing features can be lacking (e.g. Raja, Urobatis). We discuss interactions and implications of character states, framing a classification scheme for exploring cartilage structure evolution in the cartilaginous fishes.

3.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35994028

RESUMO

Elasmobranch fishes (sharks, skates and rays) consume prey of a variety of sizes and properties, and the feeding mechanism typically reflects diet. Spotted ratfish, Hydrolagus colliei (Holocephali, sister group of elasmobranchs), consume both hard and soft prey; however, the morphology of the jaws does not reflect the characteristics typical of durophagous elasmobranchs. This study investigated the mechanical properties and morphological characteristics of the jaws of spotted ratfish over ontogeny, including strain, stiffness and second moment of area, to evaluate the biomechanical function of the feeding structures. Compressive stiffness of the jaws (E=13.51-21.48 MPa) is similar to that of silicone rubber, a very flexible material. In Holocephali, the upper jaw is fused to the cranium; we show that this fusion reduces deformation experienced by the upper jaw during feeding. The lower jaw resists bending primarily in the posterior half of the jaw, which occludes with the region of the upper jaw that is wider and flatter, thus potentially providing an ideal location for the lower jaw to crush or crack prey. The mechanical properties and morphology of the feeding apparatus of spotted ratfish suggest that while the low compressive stiffness is a material limit of the jaw cartilage, spotted ratfish, and perhaps all holocephalans, evolved structural solutions (i.e. fused upper jaw, shape variation along lower jaw) to meet the demands of a durophagous diet.


Assuntos
Tubarões , Rajidae , Animais , Fenômenos Biomecânicos , Comportamento Alimentar , Peixes , Arcada Osseodentária/anatomia & histologia , Tubarões/anatomia & histologia , Rajidae/anatomia & histologia
4.
Integr Comp Biol ; 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675323

RESUMO

From large ventral pleats of humpback whales to nanoscale ridges on flower petals, wrinkled structures are omnipresent, multifunctional, and found at hugely diverse scales. Depending on the particulars of the biological system-its environment, morphology, and mechanical properties-wrinkles may control adhesion, friction, wetting, or drag; promote interfacial exchange; act as flow channels; or contribute to stretching, mechanical integrity, or structural color. Undulations on natural surfaces primarily arise from stress-induced instabilities of surface layers (e.g., buckling) during growth or aging. Variation in the material properties of surface layers and in the magnitude and orientation of intrinsic stresses during growth lead to a variety of wrinkling morphologies and patterns which, in turn, reflect the wide range of biophysical challenges wrinkled surfaces can solve. Therefore, investigating how surface wrinkles vary and are implemented across biological systems is key to understanding their structure-function relationships. In this work, we synthesize the literature in a metadata analysis of surface wrinkling in various terrestrial and marine organisms to review important morphological parameters and classify functional aspects of surface wrinkles in relation to the size and ecology of organisms. Building on our previous and current experimental studies, we explore case studies on nano/micro-scale wrinkles in biofilms, plant surfaces, and basking shark filter structures to compare developmental and structure-vs-function aspects of wrinkles with vastly different size scales and environmental demands. In doing this and by contrasting wrinkle development in soft and hard biological systems, we provide a template of structure-function relationships of biological surface wrinkles and an outlook for functionalized wrinkled biomimetic surfaces.

5.
J Anat ; 241(3): 565-580, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35638264

RESUMO

Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. In contrast to artificial armors, the boxfish exoskeleton grows with the fish; the relationship between the tessellation and the gross structure of the armor is therefore critical to sustained protection throughout growth. To clarify whether or how the boxfish tessellation is maintained or altered with age, we quantify architectural aspects of the tessellated carapace of the longhorn cowfish Lactoria cornuta through ontogeny (across nearly an order of magnitude in standard length) and in a high-throughput fashion, using high-resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual. We show that carapace growth is canalized with little variability across individuals: rather than continually adding scutes to enlarge the carapace surface, the number of scutes is surprisingly constant, with scutes increasing in volume, thickness, and especially width with age. As cowfish and their scutes grow, scutes become comparatively thinner, with the scutes at the edges (weak points in a boxy architecture) being some of the thickest and most reinforced in younger animals and thinning most slowly across ontogeny. In contrast, smaller scutes with more variable curvature were found in the limited areas of more complex topology (e.g., around fin insertions, mouth, and anus). Measurements of Gaussian and mean curvature illustrate that cowfish are essentially tessellated boxes throughout life: predominantly zero curvature surfaces comprised of mostly flat scutes, and with scutes with sharp bends used sparingly to form box edges. Since growth of a curved, tiled surface with a fixed number of tiles would require tile restructuring to accommodate the surface's changing radius of curvature, our results therefore illustrate a previously unappreciated advantage of the odd boxfish morphology: by having predominantly flat surfaces, it is the box-like body form that in fact permits a relatively straightforward growth system of this tessellated architecture (i.e., where material is added to scute edges). Our characterization of the ontogeny and maintenance of the carapace tessellation provides insights into the potentially conflicting mechanical, geometric, and developmental constraints of this species but also perspectives into natural strategies for constructing mutable tiled architectures.


Assuntos
Exoesqueleto , Tetraodontiformes , Animais , Pele , Microtomografia por Raio-X
6.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731354

RESUMO

Breast cancer frequently metastasizes to bone, causing osteolytic lesions. However, how factors secreted by primary tumors affect the bone microenvironment before the osteolytic phase of metastatic tumor growth remains unclear. Understanding these changes is critical as they may regulate metastatic dissemination and progression. To mimic premetastatic bone adaptation, immunocompromised mice were injected with MDA-MB-231-conditioned medium [tumor-conditioned media (TCM)]. Subsequently, the bones of these mice were subjected to multiscale, correlative analysis including RNA sequencing, histology, micro-computed tomography, x-ray scattering analysis, and Raman imaging. In contrast to overt metastasis causing osteolysis, TCM treatment induced new bone formation that was characterized by increased mineral apposition rate relative to control bones, altered bone quality with less matrix and more carbonate substitution, and the deposition of disoriented mineral near the growth plate. Our study suggests that breast cancer-secreted factors may promote perturbed bone growth before metastasis, which could affect initial seeding of tumor cells.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Animais , Desenvolvimento Ósseo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Osso e Ossos/diagnóstico por imagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microambiente Tumoral , Microtomografia por Raio-X
7.
J Fish Biol ; 98(4): 942-955, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32584448

RESUMO

When describing the architecture and ultrastructure of animal skeletons, introductory biology, anatomy and histology textbooks typically focus on the few bone and cartilage types prevalent in humans. In reality, cartilage and bone are far more diverse in the animal kingdom, particularly within fishes (Chondrichthyes and Actinopterygii), where cartilage and bone types are characterized by features that are anomalous or even pathological in human skeletons. This review discusses the curious and complex architectures of shark and ray tessellated cartilage, highlighting similarities and differences with their mammalian skeletal tissue counterparts. By synthesizing older anatomical literature with recent high-resolution structural and materials characterization work, this review frames emerging pictures of form-function relationships in this tissue and of the evolution and true diversity of cartilage and bone.


Assuntos
Cartilagem/ultraestrutura , Tubarões/anatomia & histologia , Animais , Mamíferos/anatomia & histologia , Relação Estrutura-Atividade
8.
Front Genet ; 11: 571694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329708

RESUMO

Members of the Chondrichthyes (Elasmobranchii and Holocephali) are distinguished by their largely cartilaginous endoskeletons, which comprise an uncalcified core overlain by a mineralized layer; in the Elasmobranchii (sharks, skates, rays) most of this mineralization takes the form of calcified polygonal tiles known as tesserae. In recent years, these skeletal tissues have been described in ever increasing detail in sharks and rays, but those of Holocephali (chimaeroids) have been less well-studied, with conflicting accounts as to whether or not tesserae are present. During embryonic ontogeny in holocephalans, cervical vertebrae fuse to form a structure called the synarcual. The synarcual mineralizes early and progressively, anteroposteriorly and dorsoventrally, and therefore presents a good skeletal structure in which to observe mineralized tissues in this group. Here, we describe the development and mineralization of the synarcual in an adult and stage 36 elephant shark embryo (Callorhinchus milii). Small, discrete, but irregular blocks of cortical mineralization are present in stage 36, similar to what has been described recently in embryos of other chimaeroid taxa such as Hydrolagus, while in Callorhinchus adults, the blocks of mineralization are more irregular, but remain small. This differs from fossil members of the holocephalan crown group (Edaphodon), as well as from stem group holocephalans (e.g., Symmorida, Helodus, Iniopterygiformes), where tesserae are notably larger than in Callorhinchus and show similarities to elasmobranch tesserae, for example with respect to polygonal shape.

9.
Nat Commun ; 11(1): 5971, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235202

RESUMO

The teeth of all vertebrates predominantly comprise the same materials, but their lifespans vary widely: in stark contrast to mammals, shark teeth are functional only for weeks, rather than decades, making lifelong durability largely irrelevant. However, their diets are diverse and often mechanically demanding, and as such, their teeth should maintain a functional morphology, even in the face of extremely high and potentially damaging contact stresses. Here, we reconcile the dilemma between the need for an operative tooth geometry and the unavoidable damage inherent to feeding on hard foods, demonstrating that the tooth cusps of Port Jackson sharks, hard-shelled prey specialists, possess unusual microarchitecture that controls tooth erosion in a way that maintains functional cusp shape. The graded architecture in the enameloid provokes a location-specific damage response, combining chipping of outer enameloid and smooth wear of inner enameloid to preserve an efficient shape for grasping hard prey. Our discovery provides experimental support for the dominant theory that multi-layered tooth enameloid facilitated evolutionary diversification of shark ecologies.


Assuntos
Tubarões/anatomia & histologia , Dente/anatomia & histologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Biomineralização , Esmalte Dentário/anatomia & histologia , Dentina/anatomia & histologia , Dureza , Microscopia Eletrônica de Varredura/métodos , Análise Espectral Raman/métodos
10.
J R Soc Interface ; 17(171): 20200474, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050779

RESUMO

An accepted uniting character of modern cartilaginous fishes (sharks, rays, chimaera) is the presence of a mineralized, skeletal crust, tiled by numerous minute plates called tesserae. Tesserae have, however, never been demonstrated in modern chimaera and it is debated whether the skeleton mineralizes at all. We show for the first time that tessellated cartilage was not lost in chimaera, as has been previously postulated, and is in many ways similar to that of sharks and rays. Tesserae in Chimaera monstrosa are less regular in shape and size in comparison to the general scheme of polygonal tesserae in sharks and rays, yet share several features with them. For example, Chimaera tesserae, like those of elasmobranchs, possess both intertesseral joints (unmineralized regions, where fibrous tissue links adjacent tesserae) and recurring patterns of local mineral density variation (e.g. Liesegang lines, hypermineralized 'spokes'), reflecting periodic accretion of mineral at tesseral edges as tesserae grow. Chimaera monstrosa's tesserae, however, appear to lack the internal cell networks that characterize tesserae in elasmobranchs, indicating fundamental differences among chondrichthyan groups in how calcification is controlled. By compiling and comparing recent ultrastructure data on tesserae, we also provide a synthesized, up-to-date and comparative glossary on tessellated cartilage, as well as a perspective on the current state of research into the topic, offering benchmark context for future research into modern and extinct vertebrate skeletal tissues.


Assuntos
Tubarões , Animais , Calcificação Fisiológica , Cartilagem , Quimera , Peixes , Esqueleto
11.
MethodsX ; 7: 100905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461920

RESUMO

A prerequisite for many analysis tasks in modern comparative biology is the segmentation of 3-dimensional (3D) images of the specimens being investigated (e.g. from microCT data). Depending on the specific imaging technique that was used to acquire the images and on the image resolution, different segmentation tools are required. While some standard tools exist that can often be applied for specific subtasks, building whole processing pipelines solely from standard tools is often difficult. Some tasks may even necessitate the implementation of manual interaction tools to achieve a quality that is sufficient for subsequent analysis. In this work, we present a pipeline of segmentation tools that can be used for the semiautomatic segmentation and quantitative analysis of voids in tissue (i.e. internal structural porosity). We use this pipeline to analyze lacuno-canalicular networks in stingray tesserae from 3D images acquired with synchrotron microCT.•The first step of this pipeline, the segmentation of the tesserae, was performed using standard marker-based watershed segmentation.•The efficient processing of the next two steps, that is, the segmentation of all lacunae spaces belonging to a specific tessera and the separation of these spaces into individual lacunae required recently developed, novel tools.•For error correction, we developed an interactive method that allowed us to quickly split lacunae that were accidentally merged, and to merge lacunae that were wrongly split.•Finally, the tesserae and their corresponding lacunae were subdivided into structural wedges (i.e. specific anatomical regions) using a semi-manual approach. With this processing pipeline, analysis of a variety of interconnected structural networks (e.g. vascular or lacuno-canalicular networks) can be achieved in a comparatively high-throughput fashion. In our study system, we were able to efficiently segment more than 12,000 lacunae in high-resolution scans of nine tesserae, providing a robust data set for statistical analysis.

12.
Bone ; 134: 115264, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32058019

RESUMO

In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the functions of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue and that cells maintain similar volume even when they have been incorporated into tesserae. Our findings support previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes, being flatter further from and more spherical closer to the unmineralized cartilage matrix, and larger in the center of tesserae. The lacunae show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact, and that pores may contain a nutrient source. We propose that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongated series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone.


Assuntos
Condrócitos , Tubarões , Rajidae , Animais , Calcificação Fisiológica , Cartilagem
13.
Nat Commun ; 10(1): 5413, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822663

RESUMO

Man-made armors often rely on rigid structures for mechanical protection, which typically results in a trade-off with flexibility and maneuverability. Chitons, a group of marine mollusks, evolved scaled armors that address similar challenges. Many chiton species possess hundreds of small, mineralized scales arrayed on the soft girdle that surrounds their overlapping shell plates. Ensuring both flexibility for locomotion and protection of the underlying soft body, the scaled girdle is an excellent model for multifunctional armor design. Here we conduct a systematic study of the material composition, nanomechanical properties, three-dimensional geometry, and interspecific structural diversity of chiton girdle scales. Moreover, inspired by the tessellated organization of chiton scales, we fabricate a synthetic flexible scaled armor analogue using parametric computational modeling and multi-material 3D printing. This approach allows us to conduct a quantitative evaluation of our chiton-inspired armor to assess its orientation-dependent flexibility and protection capabilities.

14.
Integr Comp Biol ; 59(6): 1629-1635, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774500

RESUMO

Research into biological materials often centers on the impressive material properties produced in Nature. In the process, however, this research often neglects the ecologies of the materials, the organismal contexts relating to how a biological material is actually used. In biology, materials are vital to organismal interactions with their environment and their physiology, and also provide records of their phylogenetic relationships and the selective pressures that drive biological novelties. With the papers in this symposium, we provide a view on cutting-edge work in biological materials science. The collected research delivers new perspectives on fundamental materials concepts, offering surprising insights into biological innovations and challenging the boundaries of materials' characterization techniques. The topics, systems, and disciplines covered offer a glimpse into the wide range of contemporary biological materials work. They also demonstrate the need for progressive "whole organism thinking" when characterizing biological materials, and the importance of framing biological materials research in relevant, biological contexts.


Assuntos
Materiais Biocompatíveis/análise , Ciência dos Materiais , Projetos de Pesquisa
15.
Integr Comp Biol ; 59(6): 1700-1712, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282926

RESUMO

Various 3D imaging techniques are routinely used to examine biological materials, the results of which are usually a stack of grayscale images. In order to quantify structural aspects of the biological materials, however, they must first be extracted from the dataset in a process called segmentation. If the individual structures to be extracted are in contact or very close to each other, distance-based segmentation methods utilizing the Euclidean distance transform are commonly employed. Major disadvantages of the Euclidean distance transform, however, are its susceptibility to noise (very common in biological data), which often leads to incorrect segmentations (i.e., poor separation of objects of interest), and its limitation of being only effective for roundish objects. In the present work, we propose an alternative distance transform method, the random-walk distance transform, and demonstrate its effectiveness in high-throughput segmentation of three microCT datasets of biological tilings (i.e., structures composed of a large number of similar repeating units). In contrast to the Euclidean distance transform, the random-walk approach represents the global, rather than the local, geometric character of the objects to be segmented and, thus, is less susceptible to noise. In addition, it is directly applicable to structures with anisotropic shape characteristics. Using three case studies-tessellated cartilage from a stingray, the dermal endoskeleton of a starfish, and the prismatic layer of a bivalve mollusc shell-we provide a typical workflow for the segmentation of tiled structures, describe core image processing concepts that are underused in biological research, and show that for each study system, large amounts of biologically-relevant data can be rapidly segmented, visualized, and analyzed.


Assuntos
Exoesqueleto/diagnóstico por imagem , Cartilagem/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microtomografia por Raio-X/métodos , Algoritmos , Animais , Bivalves/anatomia & histologia , Rajidae/anatomia & histologia , Estrelas-do-Mar/anatomia & histologia
16.
Acta Biomater ; 96: 421-435, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31254686

RESUMO

Skeletal tissues are built and shaped through complex, interacting active and passive processes. These spatial and temporal variabilities make interpreting growth mechanisms from morphology difficult, particularly in bone, where the remodeling process erases and rewrites local structural records of growth throughout life. In contrast to the majority of bony vertebrates, the elasmobranch fishes (sharks, rays, and their relatives) have skeletons made of cartilage, reinforced by an outer layer of mineralized tiles (tesserae), which are believed to grow only by deposition, without remodeling. We exploit this structural permanence, performing the first fine-scale correlation of structure and material properties in an elasmobranch skeleton. Our characterization across an age series of stingray tesserae allows unique insight into the growth processes and mechanical influences shaping the skeleton. Correlated quantitative backscattered electron imaging (qBEI) and nanoindentation measurements show a positive relationship between mineral density and tissue stiffness/hardness. Although tessellated cartilage as a whole (tesserae plus unmineralized cartilage) is considerably less dense than bone, we demonstrate that tesserae have exceptional local material properties, exceeding those of (mammal) bone and calcified cartilage. We show that the finescale ultrastructures recently described in tesserae have characteristic material properties suggesting distinct mechanical roles and that regions of high mineral density/stiffness in tesserae are confined predominantly to regions expected to bear high loads. In particular, tesseral spokes (laminated structures flanking joints) exhibit particularly high mineral densities and tissue material properties, more akin to teeth than bone or calcified cartilage. We conclude that these spokes toughen tesserae and reinforce points of contact between them. These toughening and reinforcing functions are supported by finite element simulations incorporating our material data. The high stresses predicted for spokes, and evidence we provide that new spoke laminae are deposited according to their local mechanical environment, suggest tessellated cartilage is both mutable and responsive, despite lacking remodeling capability. STATEMENT OF SIGNIFICANCE: The study of vertebrate skeletal materials is heavily biased toward mammal bone, despite evidence that bone and cartilage are extremely diverse. We broaden the perspective on vertebrate skeleton materials and evolution in an investigation of stingray tessellated cartilage, a curious type of unmineralized cartilage with a shell of mineralized tiles (tesserae). Combining high-resolution imaging and material testing, we demonstrate that tesserae have impressive local material properties for a vertebrate skeletal tissue, arguing for unique tissue organization relative to mammalian calcified cartilage and bone. Incorporating our materials data into mechanical models, we show that finescale material arrangements allow this cartilage to act as a functional and responsive alternative to bone, despite lacking bone's ability to remodel. These results are relevant to a diversity of researchers, from skeletal, developmental, and evolutionary biologists, to materials scientists interested in high-performance, low-density composites.


Assuntos
Densidade Óssea/fisiologia , Cartilagem/fisiologia , Módulo de Elasticidade , Rajidae/anatomia & histologia , Animais , Fenômenos Biomecânicos , Cartilagem/diagnóstico por imagem , Análise de Elementos Finitos
17.
PLoS Biol ; 17(2): e3000140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707688

RESUMO

Osteocytes, cells forming an elaborate network within the bones of most vertebrate taxa, are thought to be the master regulators of bone modeling, a process of coordinated, local bone-tissue deposition and removal that keeps bone strains at safe levels throughout life. Neoteleost fish, however, lack osteocytes and yet are known to be capable of bone modeling, although no osteocyte-independent modeling regulatory mechanism has so far been described. Here, we characterize a novel, to our knowledge, bone-modeling regulatory mechanism in a fish species (medaka), showing that although lacking osteocytes (i.e., internal mechanosensors), when loaded, medaka bones model in mechanically directed ways, successfully reducing high tissue strains. We establish that as in mammals, modeling in medaka is regulated by the SOST gene, demonstrating a mechanistic link between skeletal loading, SOST down-regulation, and intense bone deposition. However, whereas mammalian SOST is expressed almost exclusively by osteocytes, in both medaka and zebrafish (a species with osteocytic bones), SOST is expressed by a variety of nonosteocytic cells, none of which reside within the bone bulk. These findings argue that in fishes (and perhaps other vertebrates), nonosteocytic skeletal cells are both sensors and responders, shouldering duties believed exclusive to osteocytes. This previously unrecognized, SOST-dependent, osteocyte-independent mechanism challenges current paradigms of osteocyte exclusivity in bone-modeling regulation, suggesting the existence of multivariate feedback networks in bone modeling-perhaps also in mammalian bones-and thus arguing for the possibility of untapped potential for cell targets in bone therapeutics.


Assuntos
Retroalimentação Fisiológica , Proteínas de Peixes/genética , Glicoproteínas/genética , Mecanotransdução Celular/genética , Oryzias/genética , Osteogênese/genética , Proteínas de Peixe-Zebra/genética , Animais , Fenômenos Biomecânicos , Remodelação Óssea/genética , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/metabolismo , Humanos , Oryzias/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especificidade da Espécie , Natação/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
18.
J Cardiovasc Comput Tomogr ; 13(1): 21-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30322772

RESUMO

BACKGROUND: Successful transcatheter aortic valve replacement (TAVR) requires an understanding of how a prosthetic valve will interact with a patient's anatomy in advance of surgical deployment. To improve this understanding, we developed a benchtop workflow that allows for testing of physical interactions between prosthetic valves and patient-specific aortic root anatomy, including calcified leaflets, prior to actual prosthetic valve placement. METHODS: This was a retrospective study of 30 patients who underwent TAVR at a single high volume center. By design, the dataset contained 15 patients with a successful annular seal (defined by an absence of paravalvular leaks) and 15 patients with a sub-optimal seal (presence of paravalvular leaks) on post-procedure transthoracic echocardiogram (TTE). Patients received either a balloon-expandable (Edwards Sapien or Sapien XT, n = 15), or a self-expanding (Medtronic CoreValve or Core Evolut, n = 14, St. Jude Portico, n = 1) valve. Pre-procedural computed tomography (CT) angiograms, parametric geometry modeling, and multi-material 3D printing were utilized to create flexible aortic root physical models, including displaceable calcified valve leaflets. A 3D printed adjustable sizing device was then positioned in the aortic root models and sequentially opened to larger valve sizes, progressively flattening the calcified leaflets against the aortic wall. Optimal valve size and fit were determined by visual inspection and quantitative pressure mapping of interactions between the sizer and models. RESULTS: Benchtop-predicted "best fit" valve size showed a statistically significant correlation with gold standard CT measurements of the average annulus diameter (n = 30, p < 0.0001 Wilcoxon matched-pairs signed rank test). Adequateness of seal (presence or absence of paravalvular leak) was correctly predicted in 11/15 (73.3%) patients who received a balloon-expandable valve, and in 9/15 (60%) patients who received a self-expanding valve. Pressure testing provided a physical map of areas with an inadequate seal; these corresponded to areas of paravalvular leak documented by post-procedural transthoracic echocardiography. CONCLUSION: We present and demonstrate the potential of a workflow for determining optimal prosthetic valve size that accounts for aortic annular dimensions as well as the active displacement of calcified valve leaflets during prosthetic valve deployment. The workflow's open source framework offers a platform for providing predictive insights into the design and testing of future prosthetic valves.


Assuntos
Estenose da Valva Aórtica/cirurgia , Valva Aórtica/patologia , Valva Aórtica/cirurgia , Calcinose/cirurgia , Próteses Valvulares Cardíacas , Modelagem Computacional Específica para o Paciente , Impressão Tridimensional , Desenho de Prótese , Substituição da Valva Aórtica Transcateter/instrumentação , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/fisiopatologia , Insuficiência da Valva Aórtica/diagnóstico por imagem , Insuficiência da Valva Aórtica/etiologia , Insuficiência da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/fisiopatologia , Aortografia/métodos , Calcinose/diagnóstico , Calcinose/fisiopatologia , Tomada de Decisão Clínica , Angiografia por Tomografia Computadorizada , Feminino , Hospitais com Alto Volume de Atendimentos , Humanos , Masculino , Modelos Anatômicos , Modelos Cardiovasculares , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento , Fluxo de Trabalho
19.
PLoS One ; 12(12): e0188018, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236705

RESUMO

INTRODUCTION: Many biological structures show recurring tiling patterns on one structural level or the other. Current image acquisition techniques are able to resolve those tiling patterns to allow quantitative analyses. The resulting image data, however, may contain an enormous number of elements. This renders manual image analysis infeasible, in particular when statistical analysis is to be conducted, requiring a larger number of image data to be analyzed. As a consequence, the analysis process needs to be automated to a large degree. In this paper, we describe a multi-step image segmentation pipeline for the automated segmentation of the calcified cartilage into individual tesserae from computed tomography images of skeletal elements of stingrays. METHODS: Besides applying state-of-the-art algorithms like anisotropic diffusion smoothing, local thresholding for foreground segmentation, distance map calculation, and hierarchical watershed, we exploit a graph-based representation for fast correction of the segmentation. In addition, we propose a new distance map that is computed only in the plane that locally best approximates the calcified cartilage. This distance map drastically improves the separation of individual tesserae. We apply our segmentation pipeline to hyomandibulae from three individuals of the round stingray (Urobatis halleri), varying both in age and size. RESULTS: Each of the hyomandibula datasets contains approximately 3000 tesserae. To evaluate the quality of the automated segmentation, four expert users manually generated ground truth segmentations of small parts of one hyomandibula. These ground truth segmentations allowed us to compare the segmentation quality w.r.t. individual tesserae. Additionally, to investigate the segmentation quality of whole skeletal elements, landmarks were manually placed on all tesserae and their positions were then compared to the segmented tesserae. With the proposed segmentation pipeline, we sped up the processing of a single skeletal element from days or weeks to a few hours.


Assuntos
Cartilagem/química , Reconhecimento Automatizado de Padrão/métodos , Rajidae/anatomia & histologia , Algoritmos , Animais , Cartilagem/diagnóstico por imagem , Microtomografia por Raio-X
20.
R Soc Open Sci ; 4(9): 170674, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989770

RESUMO

The shapes of vertebrate teeth are often used as hallmarks of diet. Here, however, we demonstrate evidence of frequent piscivory by cartilaginous fishes with pebble-like teeth that are typically associated with durophagy, the eating of hard-shelled prey. High-resolution micro-computed tomography observation of a jaw specimen from one batoid species and visual investigation of those of two additional species reveal large numbers of embedded stingray spines, arguing that stingray predation of a scale rivalling that of the largest carnivorous sharks may not be uncommon for large, predatory batoids with rounded, non-cutting dentition. Our observations demonstrate that tooth morphology is not always a reliable indicator of diet and that stingray spines are not as potent a deterrent to predation as normally believed. In addition, we show that several spines in close contact with the jaw skeleton of a wedgefish (Rhynchobatus) have become encased in a disorganized mineralized tissue with a distinctive ultrastructure, the first natural and unequivocal evidence of a callus-building response in the tessellated cartilage unique to elasmobranch skeletons. Our findings reveal sampling and analysis biases in vertebrate ecology, especially with regard to the role of large, predatory species, while also illustrating that large body size may provide an escape from anatomical constraints on diet (e.g. gape size, specialist dentition). Our observations inform our concepts of skeletal biology and evolution in showing that tessellated cartilage-an ancient alternative to bone-is incapable of foreign tissue resorption or of restoring damaged skeletal tissue to its original state, and attest to the value of museum and skeletal specimens as records of important aspects of animal life history.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...